Automorphisms of F.K. Schmidt codes and a new method to derive cyclic sub-codes from algebraic geometric codes

نویسندگان

  • Leocarlos B. S. Lima
  • Francisco M. Assis
چکیده

We present a new method to obtain cyclic subcodes of algebraic geometric codes using their automorphisms. Automorphisms of algebraic geometric codes from F. K. Schmidt curves are proposed. We present an application of this method in designing frequency hopping sequences for spread spectrum systems. Algebraic geometric codes can provide sequences longer (better randomness) than the ones from Reed-Solomon codes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Cyclic Orbit Codes with the Normalizer of a Singer Subgroup

An algebraic construction for constant dimension subspace codes is called orbit code. It arises as the orbits under the action of a subgroup of the general linear group on subspaces in an ambient space. In particular orbit codes of a Singer subgroup of the general linear group has investigated recently. In this paper, we consider the normalizer of a Singer subgroup of the general linear group a...

متن کامل

LDPC Convolutional Codes Based on Permutation Polynomials over Integer Rings

A novel algebraic construction technique for LDPC convolutional codes (LDPCCCs) based on permutation polynomials over integer rings is presented. The underlying elements of this construction technique are graph automorphisms and quasi-cyclic (QC) codes. The algebraic structure of the obtained LDPCCCs, their encoding and decoding are discussed. These new codes have a special structure, which is ...

متن کامل

Some Optimal Codes From Designs

The binary and ternary codes spanned by the rows of the point by block incidence matrices of some 2-designs and their complementary and orthogonal designs are studied. A new method is also introduced to study optimal codes.

متن کامل

On the structure of Hermitian codes1

Let X,,, denote the Hermitian curve xm+’ = ym + y over the field F,,,z. Let Q be the single point at infinity, and let D be the sum of the other rn3 points of X,,, rational over F,,,z, each with multiplicity 1. X,,, has a cyclic group of automorphisms of order m2 1, which induces automorphisms of each of the the one-point algebraic geometric Goppa codes &(D,uQ) and their duals. As a result, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002